Disentangling Random Motion and Flow in a Complex Medium
نویسندگان
چکیده
منابع مشابه
Disentangling Random Motion and Flow in a Complex Medium.
We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dynamic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories is rescaled so as to enable robust e...
متن کاملAnalysis of Wave Motion in a Micropolar Transversely Isotropic Medium
The present investigation deals with the propagation of waves in a micropolar transversely isotropic layer. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and microrotation were also obtained. Finally, the numerical solution was carried out for aluminium epoxy material and the dispersion curv...
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملDiffusion in One Dimensional Random Medium and Hyperbolic Brownian Motion
Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. We analyse in detail this relationship and study various distributions using stochastic calculus and functional integration.
متن کاملA Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2016
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2015.11.008